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Abstract—Business intelligence is impossible without practical 

tools for assessing the quality of forecasts and comparing forecast 

models. A naive approach to comparing models by comparing 

predicted values with observable ones ignores the probabilistic 

nature of errors. Many models with varying degrees of accuracy 

are statistically equivalent. Hence, before ranking the models for 

accuracy, it is necessary to test the statistical hypothesis about 

the homogeneity of the distributions of their errors. In the 

presence of several models, the problems of their pairwise and 

group comparison arise. This chapter provides an overview of 

the non-parametric tests used in business analysis for pairwise 

and group comparisons and describes a new non-parametric 

statistical test that is highly reliable, sensitive, and specific. This 

test is based on assessing the deviation of the observed relative 

frequency of an event from its a priori known probability. The 

prior probability is given by Hill’s assumption, and the 

confidence intervals for the binomial success rate in the Bernoulli 

scheme are used to estimate its difference from the observed 

relative frequency. The paper presents the results of computer 

modeling and comparison of the proposed test with the 

alternative Kruskal-Wallis test and the Friedman test on 

artificial and real examples. 

Index Terms—Business process modeling, error analysis, 

modeling and prediction, non-parametric statistics. 

1. INTRODUCTION 

USINESS intelligence combines technologies and meth-

ods for the collection, analysis, and prediction of busi-

ness information. It may be represented as a hierarchical 

scheme consisting of four layers. 

At the foundation layer, business data are collected and an-

alyzed by descriptive data analytics methods. Here we answer 

the question: "What happened?ˮ The examples of these data 

are the signals from the sensors or exchange rate. Analysis of 

these data allows detecting the symptoms of failure of devices 

and identifying change-point of time series describing ex-

change rate. 

At the second level, we analyze diagnostic information to 

answer the question: "Why did it happen?ˮ This problem is 

harder than the first-level problem because it requests to de-

tect and recognize patterns. Using statistical methods, we 

establish intrinsic relations between data and discover reasons 

for events. For example, we may find the correlation between 

events and exchange rate changes. 

At the third level, we try to answer the question: “What 

will happen?ˮ Using data obtained at the first two levels and 

methods of predictive analytics, we forecast events that may 

occur in the future to determine what consequences can fol-

low. The fundamental complexity of forecasting requires the 

use of very complex tools of mathematical statistics, machine 

learning, data mining, and simulation. For example, predictive 

analytics can be used for forecasting the future stock price in 

the stock market or determine the optimal time for repairs to 

prevent breakdowns of process equipment. 

At the fourth level using methods of prescriptive analytics, 

we answer the question: "What to do?ˮ for making the optimal 

decision. This level demands very complex mathematical 

methods of optimization. For example, we can find an optimal 

moment for buying or selling stocks or the beginning of a 

repair.  

The subject of this chapter is the non-parametric approach 

to the estimation of predictive models. Predictive analytics 

opens up broad perspectives in commercial, financial, and 

industrial applications. For example, it allows you to optimize 

recommendation systems in online stores, as well as segment 

your customer base to improve the effectiveness of direct 

marketing and targeted advertising. In banking and insurance, 

predictive analytics has become a necessary tool in assessing 

an applicant's creditworthiness and detecting fraud. In the 

financial sector, predictive analytics can improve investment 

performance and optimize risk management. 

In industrial applications, predictive analytics allows solv-

ing the problems of forecasting product quality, optimization 

of repair schedules, recognition of abnormal symptoms, and 

many other tasks. Sophisticated high-tech enterprises use 

automatic control of operational processes. To optimize this 

control, it is necessary to organize an automated collection 

and analysis of indicators in order to predict resource con-

sumption and product output. By continuously analyzing large 

volumes of production data, you can prevent line failures and 

shutdowns, minimize costs and maximize product quality. 

The variety of numerical data found in all these calcula-

tions does not allow making educated assumptions about the 

form of their distribution; therefore, the most suitable methods 

for analysis in these areas are non-parametric methods, which 

do not imply a certain form of data distribution. These meth-

ods include non-parametric hypothesis testing methods. 
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The purpose of this chapter is to survey non-parametric 

methods for two- and k-sample used in predictive analytics 

and propose a new approach to test homogeneity of two- and 

k-samples for estimation forecasting model effectiveness. 

The paper is organized in the following way. Section 1 de-

scribes the purpose of the chapter. Section 2 describes widely 

used non-parametric tests for homogeneity. Subsection 2.1 

contains a short survey of two-sample tests, as subsection 2.2 

is devoted to k-sample tests. Section 3 describes the applica-

tion of non-parametric tests in business intelligence. Section 4 

describes the Klyushin–Petunin non-parametric test for two-

sample homogeneity without ties. The two-sample case with-

out ties is considered in Subsection 4.1, and the version with 

ties is described in Subsection 4.2. The extension of the 

above-mentioned tests on the k-sample case is considered in 

Subsection 4.3. Section 5 describes the results of numerical 

experiments. Section 6 contains conclusions and directions for 

future work. 

2. NON-PARAMETRIC HOMOGENEITY TESTS 

Non-parametric homogeneity tests for two and k-samples 

were studied in many scientific papers. 

2.1 Two-Sample Tests 

Let samples  1 2, ,..., nx x x x  and  1 2, ,..., my y y y  be drawn 

from populations 
1G  and 

2G  which follow absolutely contin-

uous distribution functions 
1F  and 

2.F  The null hypothesis 

0H  states that samples are homogeneous, i.e., follow the same 

distribution function, 
1 2,F F  and the alternative hypothesis 

1H  states the opposite (
1 2F F ). The tests for homogeneity of 

two samples are subdivided into permutation tests, rank tests, 

randomization tests, and distance tests. Also, these tests form 

the group of universal tests that are valid against any pair of 

alternatives (e.g., the Kolmogorov–Smirnov test [1], the Kui-

per test [2]), and tests that are valid against pairs of different 

alternatives of a particular class (Dickson [3], Wald and Wol-

fowitz [4], Mathisen [5], Wilcoxon [6] Mann–Whitney [6], 

Wilks [8], etc.). Also, the tests may be classified as pure non-

parametric and conditionally non-parametric ones. The pure 

non-parametric tests do not depend on the assumptions of the 

distribution function (e.g., all the tests mentioned above). The 

conditionally nonparametric tests put some assumptions of 

distributions (Pitman [9], Lehmann [10], Rosenblatt [11], 

Dwass [12], Fisz [13], Barnard [14], Birnbaum [15], Jockel 

[16], Allen [17], Efron and Tibshirani [18], Dufour and Farhat 

[19]). 

2.2  k-Sample Tests 

Let samples         1 2, ,...,
k k k k

n kx x x x G 
 
be drawn from pop-

ulations , 1,kG k K  following distributions .kF  The null hy-

pothesis 
0H  states that samples are homogeneous, i.e. 

1 2 ... KF F F   , and the alternative hypothesis 
1H  states the 

opposite, i.e., there are such i and j that i jF F , ,i j  

i, j =1,…, K.  

k-sample tests based on the distance between empirical dis-

tributions functions include the Kolmogorov–Smirnov test 

[1], [2], the Cramer–Von-Mises tests [20], the Anderson–

Darling test [21], etc. These tests use different distances be-

tween empirical functions, e.g. 
1L  (the Manhattan distance), 

2L  (the root-mean-square deviation), and L
 (the Chebyshev 

distance). The sensitivity of these tests depends on the sample 

size; the larger, the better. Obviously, this condition can rarely 

be satisfied in real applications. 

k-sample tests based on the likelihood ratio are differentiat-

ed depending on a function used in the ratio: empirical distri-

butions functions (Zhang test [22], dynamic slicing [23], en-

ergy distance [24], etc.), empirical characteristics functions 

(Sźekely and Rizzo [25], [26], Fernández et al. [27], Hušková 

and Meintanis [28], etc.), and kernel density estimations 

(Uña-Alvarez et al. [29], [30]). 

Despite the strengths of these tests, their power and con-

sistency depend on some parameters and assumptions that 

sometimes are hard to satisfy in practice. Also, to compute 

critical values of these tests, it is often necessary to make 

permutations that increase a computational burden [31]. 

Non-parametric rank-based tests are more powerful alter-

natives to the above-mentioned ones. They do not require an 

assumption on the distribution function (e.g., normality) to 

determine the p-value of the test, can be very powerful in the 

cases when other tests would fail and are robust to outliers 

[32]. That is why we shall use as benchmarks the Kruskal-

Wallis test and The Friedman test [33–37] implemented in all 

popular statistical computing packages.  

3.   NON-PARAMETRIC USED IN FORECASTING MODELS 

ESTIMATION 

Analyzing time series, the analyst has a wide range of pre-

dictive model options. The choice of the best model depends 

on many factors, primarily on its accuracy. Meanwhile, the 

accuracy of the model is a random variable that has a certain 

distribution. Two models having different accuracy can be 

compared with each other only by testing the statistical hy-

pothesis that the error of one of them is stochastically less 

than the error of the other. If the distributions of errors are 

identical, then the models should be considered equivalent, 

despite the fact that they have different indicators of accuracy. 

Usually, the standard error (MSE), the mean absolute percent-

age error (MAPE) and the mean absolute deviation (MAD) 

are used for estimating the accuracy of forecasting models. 

Thus, analyzing the quality of forecasting models, we must 

test a hypothesis that samples of forecast errors are homoge-

neous as a rule model errors are supposed to be stationary and 

unbiased.  
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The testing equality of forecasting model accuracy is clear-

ly described in [38]. Let , 1,...,jM j m  be forecasting models 

producing predictions ( )j

ix  of data sequence , 1,...,ix i n  and 

 
, 1,..., ; 1,...,

j

i i n j m   be errors of the model jM  following 

distribution 
iF . Consider a loss function  j

ig   describing 

model accuracy, e.g., standard deviation. The hypothesis 

about similar accuracy of models 
kM  and 

lM  is equivalent to 

the hypothesis that the mathematical expectation of 

     , ( ) ( )k l k l

i i id g g    is zero. Thus,        .k l

i iE g E g   If 

a loss function is the standard deviation ( ) ( )k l

i i  , the problem 

is reduced to testing the hypothesis    ( ) ( ) .k l

i iE E   Usually, 

testing equality of forecasting models accuracy is reduced to 

the testing of this hypothesis [38]. However, the hypothesis 

that accuracy measures follow the same distribution is more 

general. Thus, to test homogeneity, it is necessary to test the 

null hypothesis not only in partial case    ( ) ( )k l

i iE E   but in 

the general case .k lF F   

4. KLYUSHIN–PETUNIN TEST FOR HOMOGENEITY  

The Klyushin–Petunin test has two versions: for samples 

without ties and for samples containing ties. 

4.1  Two-sample case without ties 

Let samples  1 2, ,..., nx x x x  and  1 2, ,..., my y y y  be drawn 

from populations 
1G  and 

2G  which follows absolutely con-

tinuous distribution functions 
1F  and 

2.F According to Hill's 

assumption ( )nA  [39], if random values 
1 2, ,..., nx x x  are ex-

changeable and belong to absolutely continuous distribution, 

then  

     1 , ,
1

n iji j

j i
P x x x p

n



  


,j i

               
 (1) 

where 
1nx 
 is a random value following the same distribution 

as 
1 2, ,..., nx x x , and  i

x  is the i-th value of the ordered sample. 

On the ground of this fact, non-parametric tests for homoge-

neity of samples without ties [40] and with ties [41] were 

developed. 

Let  k

ijA  be an event when the elements of y  are greater 

than  i
x   and less than  j

x , and ijh  is its relative frequency. 

Knowing the a priori probability (1) and the observed relative 

frequency ijh
 , 

we can estimate how much ijh  deviates from 

ijp  using Wilson confidence intervals for binomial propor-

tions: 
2 2

(1)

2

2 2

(2)

2

2 (1 ) 4
,

2 (1 ) 4
.

ij ij ij

ij

ij ij ij

ij

h m z z h h m z
p

m z

h m z z h h m z
p

m z

   




   




             (2) 

Then, we compute the lower and upper bounds of the con-

fidence interval       , 1 2
,

n m

ij ij ijI p p  with the parameter z depend-

ing on the desired significance level. If z is equal to 3, then the 

significance level of  ,n m

ijI  is less than 0.05 [40]. In this case, 

(2) is a so-called 3s-rule interval. This rule is based on the 

Petunin-Vysochanskii inequality [42, 43], stating that if X be a 

random variable with unimodal distribution, mean μ and fi-

nite, non-zero variance σ2, than   2

4

9
P X    


 for any 

8
.

3
   Replacing the mean  and the variance  by the sam-

ple mean x  and the standard deviation s and setting  equal to 

3, we obtain the 3s-rule:  
4

3 0.494 0.05.
81

P X x s      

Denote  1 2N n n   and  ,
#

1

n m

ij ij

j i
L p I

n

 
   

 
. Then, 

h L N  is a homogeneity measure of samples x and y, which 

we shall call p-statistics, and a Wilson confidence interval (2) 

where we set h instead of ijh  and N instead of m is the confi-

dence interval for the probability  ,
.

1

n m

ij

j i
p I

n

 
 

 
 

The scheme of events  k

ijA  when the null hypothesis is true 

is called a generalized Bernoulli scheme [44], [45]. If the null 

hypothesis is false, this scheme is called a modified Bernoulli 

scheme. In the general case, when the null hypothesis can be 

either true or false, this scheme is called Matveichuk–Petunin 

scheme [46]. Thus, the test for the null hypothesis 
1 2F F  

with a significance level, which is less than 0.05, maybe for-

mulated in the following way: construct the Wilson confi-

dence interval  1 2,nI p p  for p-statistics; if 
nI  contains 0.95, 

the null hypothesis is accepted, else the null hypothesis is 

rejected. 

4.2 Two-Sample Case with Ties 

In practice, due to imprecise measurement, samples often 

contain ties, i.e., repeated elements. A sample x  containing 

absolutely precise elements we shall call hypothetical. The 

sample  1 2, , ..., nx x x x  containing approximations of the 

hypothetical elements of the hypothetical x  we shall call 

empirical. Population G  we shall call an empirical population 

corresponding to the hypothetical population G . Let 

(1) (2) ( )... nx x x    and (1) (2) ( )... nx x x    be variational series 

constructed by hypothetical and empirical samples.  

For a sample value x  that is drawn from G  independently 

from x  the Hill assumption holds [39]: 

 ( ) ( 1)

1
,

1
k kp x x x

n




  

,                          (3) 

where 0,1, ...,k n , (0) ,x    and ( 1)nx    . Hence, 
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   ( ) ( )

1 1

,

... ,
1

ij ij i j

i i j

p p A p x x x

j i

n



 

   


    


  

                 (4) 

where 
 ( ) 1

,
1

k

k

t x

n





  ( )  lt x  is the number of repetitions of 

( )lx , 

 ( ) ( ),ij i jA x x x      . If   1 2, , ..., nx x x x
 
does not contain ties, 

then (4) transforms to (1).  

Let the null hypothesis states that hypothetical continuous 

distribution functions 
1F  and 

2F  of hypothetical populations 

1G  and 
2G  are identical. Consider empirical samples 

 1 1,..., nx x x G   and  1 2,..., my y y G  , where 1G   and 2G   

are the empirical populations corresponding to hypothetical 

populations 
1G  and 

2G . Suppose that 
1 2F F  and denote 

  ( )

( ) ( ),k

ij k i jA x x x  , where ( )ix  is the i-th value of the or-

dered sample. If 
1 2F F , then the probability of ( )k

ijA  is equal 

to (4). Construct the Wilson confidence interval (2) 

 ( , ) (1) (2),n m

ij ij ijI p p for the unknown probability of ( )k

ijA  using its 

observed relative frequency. The number of all confidence 

intervals  ( , ) (1) (2),n m

ij ij ijI p p  is equal to ( 1) 2N n n  . Put 

 
1 1

1
# ... .

1

n

i i j ij

j i
h I

N n
 

 
      

 
    Compute a confidence 

interval  ( , ) (1) (2),n mI p p  for the probability 

 ,

1 1...
1

n m

i i j ij

j i
p I

n
 

 
     

 
    using (2) as described in 

Section 4.2. The statistics h  is called the empirical p-

statistics. It estimates the homogeneity of empirical samples 

x  and y , Wilson confidence interval (2), where we set h 

instead of ijh  and N instead of m is the confidence interval for 

the probability  ,

1 1... .
1

n m

i i j ij

j i
p I

n
 

 
     

 
    

4.3 k-sample case 

The two-sample Klyushin–Petunin test may be expanded 

on the k-sample case using the scheme one-vs-rest. Suppose 

that all k samples follow the same distribution. Then, if we 

select a sample and join other samples into one sample, we 

shall reduce the k-sample case to the two-sample case. Joining 

the samples following the same distribution, we obtain a sam-

ple following this distribution. Thus, if the p-statistics be-

tween selected and joined samples is greater than 0.95, the 

null hypothesis about identical distributions is accepted; oth-

erwise, the k samples are heterogeneous. 

5. NUMERICAL EXPERIMENTS  

The strengths of the proposed approach are justified by 

numerical experiments comparing the p-statistics with the 

Kruskal–Wallis test and the Friedman test. We test the loca-

tion shift hypothesis (samples have different means and the 

same variances) and the scale shift hypothesis (sample have 

the same means and different variances) using samples, which 

do not contain ties and samples with a single tie. For experi-

ments, we selected samples from the Gaussian distributions 

N(, ) with different overlapping, where  is the mean and  

is the standard deviation. 

5.1 Location Shift Hypothesis without Ties 

To test a location shift hypothesis we 100 times generated 

by C++ pseudo random number generator 5 samples contain-

ing 10 real numbers that follows the distributions N(0,1), 

N(0.1, 1), N(0.2, 1),  N(0.3, 1), and  N(0.4, 1), and computed 

p-statistics by the scheme one-vs.-others. If the p-statistics 

between these samples was greater than 0.95, we concluded 

that they are homogeneous, otherwise the k samples were 

considered as heterogeneous. Average p-statistics was equal to 

0.756. The Wilson confidence interval for the p-statistics, 

constructed as indicated in Section 4.1, was (0.532, 0.894).  

Hereinafter, Var1–Var5 denotes N(0,1), N(0.1, 1), N(0.2, 1),  

N(0.3, 1), and  N(0.4, 1) in Tables 1, 3, 5, 11, 13, 15, and 

N(0,1), N(0, 2), N(0, 3),  N(0, 4), and  N(0, 5) in Tables 6, 8, 

10, 16, 18 and 20.  

TABLE 1 

UPPER BOUNDS OF THE CONFIDENCE INTERVALS OF THE PAIRWISE  

P-STATISTICS FOR DISTRIBUTIONS N(0,1), N(0.1, 1), N(0.2, 1),  N(0.3, 1), AND  

N(0.4, 1) WITHOUT TIES 

 Var1 Var2 Var3 Var4 Var5 

Var1 1.000 0.767 0.767 0.676 0.767 

Var2 – 1.000 0.907 0.801 0.907 

Var3 – – 1.000 0.864 0.921 

Var4 – – – 1.000 0.695 

Var5 – – – – 1.000 

TABLE 2 

SUMMARY OF THE KRUSKAL–WALLIS  TEST FOR DISTRIBUTIONS N(0,1), 

N(0.1, 1), N(0.2, 1),  N(0.3, 1), AND  N(0.4, 1) WITHOUT TIES 

Kruskal–Wallis statistics  (Observed value) 5.781 

Kruskal–Wallis statistics (Critical value) 9.488 

Degree of freedom 4 

p-value (one-tailed) 0.216 

Significance level 0.05 

TABLE 3 

PAIRWISE  P-VALUES OF THE KRUSKAL–WALLIS TEST  FOR DISTRIBUTIONS 

N(0,1), N(0.1, 1), N(0.2, 1),  N(0.3, 1), AND  N(0.4, 1) WITHOUT TIES 

 Var1 Var2 Var3 Var4 Var5 

Var1 1.000 0.974 0.505 1.000 1.000 

Var2 0.974 1.000 0.984 0.653 0.974 

Var3 0.505 0.984 1.000 0.110 0.505 

Var4 1.000 0.653 0.110 1.000 0.700 

Var5 0.789 1.000 0.921 0.700 1.000 
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TABLE 4 

SUMMARY OF THE FRIEDMAN TEST  FOR DISTRIBUTIONS N(0,1), N(0.1, 1), 

N(0.2, 1),  N(0.3, 1), AND  N(0.4, 1) WITHOUT TIES 

Friedman statistics (Observed value) 4.080 

Friedman statistics (Critical value) 9.488 

Number of degrees of freedom 4 

p-value (one-tailed) 0.395 

Significance level 0.05 

TABLE 5 

PAIRWISE  P-VALUES OF THE FRIEDMAN TEST  FOR DISTRIBUTIONS N(0,1), 

N(0.1, 1), N(0.2, 1),  N(0.3, 1), AND  N(0.4, 1) WITHOUT TIES 

 Var1 Var2 Var3 Var4 Var5 

Var1 1.000 1.000 0.708 0.955 1.000 

Var2 1.000 1.000 0.790 0.915 1.000 

Var3 0.708 0.790 1.000 0.279 0.708 

Var4 0.955 0.915 0.279 1.000 0.955 

Var5 1.000 1.000 0.708 0.955 1.000 

TABLE 6 

UPPER BOUNDS OF THE CONFIDENCE INTERVALS OF THE PAIRWISE  

P-STATISTICS FOR DISTRIBUTIONS N(0,1), N(0,2), N(0, 3),  N(0, 4), AND  N(0, 

5)  WITHOUT TIES 

Upper bound  Var1 Var2 Var3 Var4 Var5 

Var1 1.000 0.732 0.732 0.767 0.749 

Var2 – 1.000 0.945 0.957 0.957 

Var3 – – 1.000 0.695 0.741 

Var4 – – – 1.000 0.921 

Var5 – – – – 1.000 

The results cited in Table 1 suggest that any sample was 

not recognized as homogeneous with others. The results cited 

in Table 2 and Table 3 indicate that all the samples were rec-

ognized as homogeneous with others. Thus, we may ascertain 

that the Kruskal–Wallis fails in this case. The results cited in 

Table 4 and Table 5 show that the Friedman test fails in this 

case. 

5.2 Scale Shift Hypothesis without Ties 

To test a scale hypothesis, we 100 times generated five sam-

ples containing ten real numbers that follow the distributions 

N(0,1), N(0, 2), N(0, 3),  N(0, 4), and  N(0, 5), and computed 

p-statistics by the scheme one-vs-others. If the p-statistics 

between these samples is greater than 0.95, we concluded that 

they are homogeneous; otherwise, the k samples were consid-

ered heterogeneous. The average p-statistics was equal to 

0.822. The confidence interval was (0.603, 0.934). This inter-

val does not contain 0.95; thus, the samples in whole may be 

considered heterogeneous. The corresponding results are pro-

vided in Tables 6–10. Note that the Klyushin–Petunin test 

recognized the samples as heterogeneous in 8 cases of 10. 

Meantime, the Kruskal–Wallis and the Friedman tests failed.  

TABLE 7 

SUMMARY OF THE KRUSKAL–WALLIS  TEST FOR DISTRIBUTIONS N(0,1), N(0, 

2), N(0, 3),  N(0, 4), AND  N(0, 5) WITHOUT TIES 

Kruskal–Wallis statistics  (Observed value) 5.512 

Kruskal–Wallis statistics (Critical value) 9.488 

Number of degrees of freedom 4 

Kruskal–Wallis statistics  (Observed value) 0.239 

Kruskal–Wallis statistics (Critical value) 0.05 

TABLE 8 

PAIRWISE P-VALUES OF THE KRUSKAL–WALLIS TEST  FOR DISTRIBUTIONS 

N(0,1), N(0, 2), N(0, 3),  N(0, 4), AND  N(0, 5) WITHOUT TIES 

 Var1 Var2 Var3 Var4 Var5 

Var1 1.000 0.155 1.000 0.700 0.961 

Var2 0.155 1.000 0.213 0.984 0.996 

Var3 1.000 0.213 1.000 0.700 0.974 

Var4 0.700 0.984 0.700 1.000 1.000 

Var5 0.961 0.996 0.974 1.000 1.000 

TABLE 9 

SUMMARY OF THE FRIEDMAN TEST FOR DISTRIBUTIONS N(0,1), N(0, 2),  

N(0, 3),  N(0, 4), AND  N(0, 5) WITHOUT TIES 

Friedman statistics (Observed value) 7.600 

Friedman statistics (Critical value) 9.488 

Number of degrees of freedom  4 

p-value (one-tailed) 0.107 

Significance level 0.05 

TABLE 10 

PAIRWISE  P-VALUES OF THE FRIEDMAN TEST  FOR DISTRIBUTIONS N(0,1), 

N(0, 2), N(0, 3),  N(0, 4), AND  N(0, 5) WITHOUT TIES 

  Var1 Var2 Var3 Var4 Var5 

Var1 1.000 0.118 0.993 0.279 0.527 

Var2 0.118 1.000 0.279 0.993 0.915 

Var3 0.993 0.279 1.000 0.527 0.790 

Var4 0.279 0.993 0.527 1.000 0.993 

Var5 0.527 0.915 0.790 0.993 1.000 

5.3 Location shift Hypothesis with Ties 

To test a shift hypothesis for samples with ties, we 100 times 

generated five samples containing ten real numbers with a 

single tie that follow the distributions N(0,1), N(0.1, 1), 

N(0.2, 1),  N(0.3, 1), and  N(0.4, 1), were two sample values 

were the same, and compute p-statistics by the scheme one-

vs-others. The average p-statistics was equal to 0.533. The 

Wilson confidence interval constructed using the 3s-rule was 

(0.324, 0.731). This interval does not contain 0.95; thus, the 

sample in whole may be considered heterogeneous. 

The results cited in Table 11 suggest that only 3 cases were 

recognized as homogeneous with others. The results cited in 

Tables 12–15 indicate that all the samples were recognized as 

homogeneous. Thus, we may ascertain that the Kruskal–

Wallis test and the Friedman test fail in this case. 
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TABLE 11 

UPPER BOUNDS OF THE CONFIDENCE INTERVALS 

OF THE PAIRWISE P-STATISTICS FOR DISTRIBUTIONS 

N(0,1), N(0.1, 1), N(0.2, 1),  N(0.3, 1), AND  N(0.4, 1) 

WITH SINGLE TIE 

 Var1 Var2 Var3 Var4 Var5 

Var1 1.000 0.988 0.986 0.968 0.992 

Var2 – 1.000 0.998 0.921 0.997 

Var3 – – 1.000 0.849 0.992 

Var4 – – – 1.000 0.934 

Var5 – – – – 1.000 

TABLE 12 

SUMMARY OF THE KRUSKAL–WALLIS  TEST 

FOR DISTRIBUTIONS N(0,1), N(0.1, 1), N(0.2, 1),  N(0.3, 1), AND  N(0.4, 1) 

WITH SINGLE TIE 

Kruskal–Wallis statistics  (Observed value) 5,808 

Kruskal–Wallis statistics (Critical value) 9,488 

Degree of freedom 4 

p-value (one-tailed) 0,214 

Significance level 0,05 

TABLE 13 

PAIRWISE  P-VALUES OF THE KRUSKAL–WALLIS TEST 

FOR DISTRIBUTIONS N(0,1), N(0.1, 1), N(0.2, 1),  N(0.3, 1), AND  N(0.4, 1) 

WITH SINGLE TIE 

 Var1 Var2 Var3 Var4 Var5 

Var1 1.000 0.984 0.505 1.000 0.745 

Var2 0.984 1.000 0.984 0.652 0.998 

Var3 0.505 0.984 1.000 0.110 0.921 

Var4 1.000 0.652 0.110 1.000 0.700 

Var5 0.745 0.998 0.921 0.700 1.000 

TABLE 14 

SUMMARY OF THE FRIEDMAN TEST 

FOR DISTRIBUTIONS N(0,1), N(0.1, 1), N(0.2, 1),  N(0.3, 1), AND  N(0.4, 1) 

WITH SINGLE TIE 

Friedman statistics (Observed value) 4,080 

Friedman statistics (Critical value) 9,488 

Number of degrees of freedom  4 

p-value (one-tailed) 0,395 

Significance level 0,05 

TABLE 15 

PAIRWISE  P-VALUES OF THE FRIEDMAN TEST 

FOR DISTRIBUTIONS N(0,1), N(0.1, 1), N(0.2, 1),  N(0.3, 1), AND  N(0.4, 1) 

WITH SINGLE TIE 

  Var1 Var2 Var3 Var4 Var5 

Var1 1.000 1.000 0.708 0.955 1.000 

Var2 1.000 1.000 0.708 0.955 1.000 

Var3 0.708 0.708 1.000 0.279 0.790 

Var4 0.955 0.955 0.279 1.000 0.915 

Var5 1.000 1.000 0.790 0.915 1.000 

TABLE 16 

UPPER BOUNDS OF THE CONFIDENCE INTERVALS 

OF THE PAIRWISE P-STATICTICS FOR DISTRIBUTIONS 

N(0,1), N(0,2), N(0, 3), N(0, 4), AND  N(0, 5) 

WITH SINGLE TIE 

  Var1 Var2 Var3 Var4 Var5 

Var1 1.000 0.921 0.985 0.946 0.921 

Var2 – 1.000 0.894 0.993 0.879 

Var3 – – 1.000 0.948 0.934 

Var4 – – – 1.000 0.946 

Var5 – – – – 1.000 

TABLE 17 

SUMMARY OF THE KRUSKAL–WALLIS  TEST 

FOR DISTRIBUTIONS N(0,1), N(0, 2), N(0, 3),  N(0, 4), AND  N(0, 5) 

WITH SINGLE TIE 

Kruskal–Wallis statistics  (Observed value) 6,145 

Kruskal–Wallis statistics (Critical value) 9,488 

Degree of freedom 4 

p-value (one-tailed) 0,189 

Significance level 0,05 

TABLE 18 

PAIRWISE  P-VALUES OF THE KRUSKAL–WALLIS TEST 

FOR DISTRIBUTIONS N(0,1), N(0, 2), N(0, 3),  N(0, 4), AND  N(0, 5) WITH 

SINGLE TIE 

 Var1 Var2 Var3 Var4 Var5 

Var1 1.000 0.155 0.999 0.700 0.921 

Var2 0.155 1.000 0.182 0.974 0.999 

Var3 0.999 0.182 1.000 0.652 0.863 

Var4 0.700 0.974 0.652 1 1.000 

Var5 0.921 0.999 0.863 1.000 1.000 

TABLE 19 

SUMMARY OF THE FRIEDMAN TEST 

FOR DISTRIBUTIONS 

N(0,1), N(0, 2), N(0, 3),  N(0, 4), AND  N(0, 5) WITH SINGLE TIE 

Friedman statistics (Observed value) 8,400 

Friedman statistics (Critical value) 9,488 

Number of degrees of freedom  4 

p-value (one-tailed) 0,078 

Significance level 0,05 

TABLE 20 

PAIRWISE  P-VALUES OF THE FRIEDMAN TEST 

FOR DISTRIBUTIONS N(0,1), N(0, 2), N(0, 3),  N(0, 4), AND  N(0, 5) WITH 

SINGLE TIE 

  Var1 Var2 Var3 Var4 Var5 

Var1 1.000 0.118 0.993 0.279 0.527 

Var2 0.118 1.000 0.279 0.993 0.915 

Var3 0.993 0.279 1.000 0.527 0.790 

Var4 0.279 0.993 0.527 1.000 0.993 

Var5 0.527 0.915 0.790 0.993 1.000 
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TABLE 21  

RESULTS OF ANN AND ARIMA MODELS FOR DELL STOCK INDEX [47] 

Forecast error  Forecast error 

Time ARIMA ANN  Time ARIMA ANN 

01.03.2010 0.0302 0.0162  18.03.2010 0.0206 −0.0110 

02.03.2010 0.0095 0.0161  19.03.2010 0.0090 −0.0278 

03.03.2010 0.0007 0.0110  22.03.2010 −0.0034 −0.0198 

04.03.2010 0.0088 0.0000  23.03.2010 0.0019 0.01380 

05.03.2010 0.0252 0.0072  24.03.2010 0.0220 −0.0080 

08.03.2010 0.0086 0.0093  25.03.2010 −0.006 −0.0229 

09.03.2010 0.0183 0.0134  26.03.2010 0.0160 −0.02135 

10.03.2010 0.0325 0.0154  29.03.2010 0.0047 −0.0294 

11.03.2010 0.0021 0.0007  26.03.2010 0.0160 −0.02135 

12.03.2010 −0.0035 −0.0028  29.03.2010 0.0047 −0.0294 

15.03.2010 0.0077 −0.0098  30.03.2010 −0.003 −0.0354 

16.03.2010 −0.0133 −0.0147  31.03.2010 0.0033 −0.0386 

17.03.2010 0.0062 −0.0014     

5.4 Scale Shift Hypothesis with Ties 

To test a scale hypothesis, we 100 times generated five sam-

ples containing ten real numbers that follow the distributions 

N(0, 1), N(0, 2), N(0, 3),  N(0, 4), and  N(0, 5) and contain a 

single tie, and then compute p-statistics by the scheme one-vs-

others. If the p-statistics between these samples was greater 

than 0.95, we concluded that they are homogeneous; other-

wise, the k samples were considered as not homogeneous. The 

average p-statistics was equal to 0.777. The confidence inter-

val constructed using 3s-rule is (0.555, 0.907). The interval 

does not contain 0.95; thus, the samples in whole may be 

considered as heterogeneous. The results provided in Table 

16–20 show that the Kruskal–Wallis and Friedman tests 

failed.  

5.3 Two-Sample Tests for Dell Stock Index 

Let us apply the proposed test to data from [47] (Table 21). 

The authors of this paper investigated the accuracy of the 

ARIMA predictive model and artificial neural networks ANN 

using the Dell stock index collected over 23 days from the 

New York Stock Exchange during the period from August 17 

(1988) to February 25 (2011) and containing 5680 observa-

tions. Here ARIMA(p,d,q) denotes the model of the auto-

regressive integrated moving average, where p is the number 

of time lags, d is the number of times the data have had past 

values subtracted, and q is the order of the moving-average 

model. Hereinafter, Var1–Var5 denotes ARIMA(1,0,0)–

ARIMA(5,0,0) models. 

Comparing the accuracy indicators, the authors of the pa-

per concluded that ANN neural networks are more accurate 

than the autoregressive integrated moving average model in 

terms of relative forecast errors. Using the Klyushin-Petunin 

test, the Kruskal-Wallis test, and the Friedman test, we can 

draw different conclusions. According to the Klyushin-

Petunin test, the errors of the two considered models are not 
 

TABLE 22 

SUMMARY OF THE KRUSKAL–WALLIS  TEST FOR DELL STOCK INDEX 

Kruskal–Wallis statistics  (Observed value) 6.607 

Kruskal–Wallis statistics (Critical value) 3.841 

Degree of freedom 1 

p-value (one-tailed) 0.010 

Significance level 0.05 

TABLE 23 

SUMMARY OF THE FRIEDMAN  TEST FOR DELL STOCK INDEX 

Friedman statistics (Observed value) 7.348 

Friedman statistics (Critical value) 3.841 

Number of degrees of freedom  1 

p-value (one-tailed) 0.007 

Significance level 0.05 

TABLE 24 

UPPER BOUNDS OF THE CONFIDENCE INTERVALS OF THE PAIRWISE   

P-STATICTICS FOR MODELS ARIMA(1,0,0), ARIMA(2,0,0), ARIMA(3,0,0), 

ARIMA(4,0,0), AND ARIMA(5,0,0)  

 Var1 Var2 Var3 Var4 Var5 

Var1 1.000 0.953 0.929 0.927 0.921 

Var2 – 1.000 0.899 0.892 0.902 

Var3 – – 1.000 0.905 0.899 

Var4 – –  1.000 0.939 

Var5 – – – – 1 

TABLE 25 

SUMMARY OF THE KRUSKAL–WALLIS  TEST FOR MODELS ARIMA(1,0,0), 

ARIMA(2,0,0), ARIMA(3,0,0), ARIMA(4,0,0), AND ARIMA(5,0,0) 

Kruskal–Wallis statistics  (Observed value) 1.000 

Kruskal–Wallis statistics (Critical value) 9.488 

Degree of freedom 4 

p-value (one-tailed) 0.910 

Significance level 0.05 

statistically different since the upper bound of the confidence 

interval for the p-statistic (0.96) is greater than 0.95. There-

fore, these models can be considered statistically equivalent, 

opposite to Kruskal-Wallis and Friedman tests (Tables 22–23).   

5.4 k-Sample Tests for Dell Stock Index 

To extend this experiment on the k-sample case, let us consid-

er 5 ARIMA models predicting the Dell Stock Index: ARI-

MA(1,0,0), ARIMA(2,0,0), ARIMA(3,0,0), ARIMA(4,0,0), 

and ARIMA(5,0,0) using the training sample published in [47] 

The results are provided in Tables 24–28. According to the 

Klyushin-Petunin test, the errors of the five considered ARI-

MA models are not statistically different in total (homogene-

ous) since the upper bound of the confidence interval for the 
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p-statistic (0.99) is greater than 0.95. Thus, these models can 

be considered statistically equivalent. Meantime, the Kruskal-

Wallis (Table 25, 26) and Friedman tests (Table 27, 28) lead to 

opposite conclusions. Pairwise comparisons show that the 

Klyushin–Petunin test recognizes different samples in almost 

all the cases.  

TABLE 26 

PAIRWISE  P-VALUES OF THE KRUSKAL–WALLIS TEST  FOR MODELS ARI-

MA(1,0,0), ARIMA(2,0,0), ARIMA(3,0,0), ARIMA(4,0,0), AND ARI-

MA(5,0,0) 

 Var1 Var2 Var3 Var4 Var5 

Var1 1.000 0.155 1.000 0.700 0.961 

Var2 0.155 1.000 0.213 0.984 0.996 

Var3 1.000 0.213 1.000 0.700 0.974 

Var4 0.700 0.984 0.700 1.000 1.000 

Var5 0.961 0.996 0.974 1.000 1.000 

TABLE 27 

SUMMARY OF THE FRIEDMAN TEST FOR MODELS ARIMA(1,0,0), ARI-

MA(2,0,0), ARIMA(3,0,0), ARIMA(4,0,0), AND ARIMA(5,0,0) 

Friedman statistics (Observed value) 18.400 

Friedman statistics (Critical value) 9.488 

Number of degrees of freedom  4 

p-value (one-tailed) 0.001 

Significance level 0.05 

TABLE 28 

PAIRWISE  P-VALUES OF THE FRIEDMAN TEST  FOR MODELS ARIMA(1,0,0), 

ARIMA(2,0,0), ARIMA(3,0,0), ARIMA(4,0,0), AND ARIMA(5,0,0) 

 Var1 Var2 Var3 Var4 Var5 

Var1 1.000 0.744 0.744 0.629 0.044 

Var2 0.744 1.000 0.112 1.000 0.508 

Var3 0.744 0.112 1.000 0.072 0.001 

Var4 0.629 1.000 0.072 1.000 0.629 

Var5 0.044 0.508 0.001 0.629 1.000 

6. CONCLUSION 

Direct comparison of forecasts using accuracy indicators 

without taking into account their stochastic nature is incorrect. 

Before comparing the accuracy, it is necessary to test the 

hypothesis about the identity of the distribution functions of 

different prediction models. To solve this problem, non-

parametric methods are widely used, in particular, the Krus-

kal–Wallis and Friedman tests. We have proposed a new test 

that is effective for comparing predictive models. The level of 

asymptotic significance of this test does not exceed 0.05. The 

Klyushin-Petunin test is more universal than the Kruskal–

Wallis and Friedman tests; it allows ordering pairs of samples 

and is easy to calculate. The practical usefulness of the pro-

posed test is illustrated by examples. Further work will focus 

on the study of the theoretical properties of the proposed crite-

rion. 
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